Why I hate fun

Ever since I decided to specialize in game design I struggled with the word “fun”. It might sound silly to struggle with a term that is so central to the art of making games but it makes sense once you start to research ‘fun’. First of all very limited research has been done and secondly the term ‘fun’ is ambiguous. Fun means something different for everyone.

Many other industries envy the games industry for making fun products. They mistakenly think that games are this magical medium that are automatically fun and engaging. As a result, they applied typical game elements such as XP and competition to apps as an attempt to make ‘boring’ tasks more fun. But game designers also struggle to make their games engaging and fun. Not every player enjoys playing every game or genre. I typically don’t enjoy most first person shooters because I suck at them. On the other hand it is not just games that can be fun. Many people think knitting is fun, others think watching a football match is fun or playing a musical instrument. What is considered fun often depends on someone’s expectations and their current context. A player has to be in the right state of mind before considering to play a game, they need to ‘want’ to play the game or do any other activity.

This can be fun too

A researcher who attempts to understand fun more thoroughly is Lazzaro (2009). She formed the Four Fun Key model to distinguish between four different types of fun: Hard fun, easy fun, serious fun and people fun. Hard fun is very typical for many hardcore games and is fun that arises from overcoming challenges and obstacles. A key emotion in hard fun is frustration followed by victory. Easy fun can be achieved by engagement through novelty and can be found in many exploration and puzzle games. Emotions that are key to easy fun are curiosity, wonder and surprise. Serious fun is fun people have when they feel better about themselves or being better at something that matters. People fun is concerned with the enjoyment that arises from the interaction between people. You can think about competitive or cooperative games people play because they enjoy playing together rather than the game itself.

The Cambridge dictionary defines fun as pleasure, enjoyment, entertainment, or as an activity or behaviour that isn’t serious (http://dictionary.cambridge.org/dictionary/english/fun). While we can measure pleasure and enjoyment objectively by measuring physiological changes in the body, we cannot always say we are having fun when we are enjoying ourselves. Besides that, within casual games mainly, pleasure and enjoyment are supposed to be “easy”. This means that you should be careful with challenging the player. If a player wins (often) they will have fun which is the complete opposite of many hardcore games.

Within game design we often use flow theory interchangeably with fun. According to Csikszentmihalyi (1996), flow is a mental state in which a person in fully immersed in an activity. The state of flow can be achieved by matching the most optimal skill with the most optimal difficulty for a person. In the case of games, a player becomes so immersed that they forget about their surroundings and lose track of time. A learning curve is used in most games, both casual and hardcore, to account for player’s changing  skill and difficulty level. However flow theory isn’t a definition for fun but can result in a player having fun. This mainly works for hard fun as easy fun doesn’t require the player to be fully immersed.

 

References

  • Lazzaro, N. (2009). Why we play: affect and the fun of games. Human-computer interaction: Designing for diverse users and domains155.
  • Csikszentmihalyi, M. (1996). Flow and the psychology of discovery and invention. New York: Harper Collins.

The different ways we perceive games

By now you know that our brain is remarkable and weird. How it perceives things and how it can fool us. But you are not yet aware of the two different methods our brain uses to perceive the world: top-down processing and bottom-up processing. Bottom-up processing is automatic, we instantly know and understand what we have perceived. Top-down processing is a more deliberate process where we sometimes have to dig deep to understand what we have perceived. These two methods we use for perception are related to the dual-process theory, top-down processing is a form of system 2 thinking and bottom-up processing is a form of system 1 thinking. Bottom-up processing is always on and can help us quickly make sense of the world around us. Bottom-up processing happens when salient (outstanding) features of a stimuli draw attention. This stimuli can be a loud sound from the timer you set when you are cooking an egg or an alarm. It can also be something visual, a smell, taste or a tactile sensation.  Continue reading The different ways we perceive games

Perceiving is believing – the game design edition

Perceiving is believing, or is it really? We have five basic senses which we use to perceive the world with: smell, taste, touch, seeing and hearing. But there is a difference between sensing and perceiving. Our senses provide us with raw data from the environment around us. This raw data can be visuals from our eyes, airborne chemicals our noses pick up, tastes on our tongue, soundwaves via our ears or tactile (touch) information from our skin. Perception, on the other hand, is the way our brain organizes and interprets this raw data. We use our perception to make sense of what we sensed. Perception can be influenced by the context in which the stimuli (what we have sensed) presented, our expectations and our current mood. What you see isn’t always what you get and that is true for all senses. Perceiving isn’t always believing.

The difference between perception and sensation

Our brain works in weird ways which affects our perception too. Sometimes you don’t perceive something you’ve sensed or you perceived something that wasn’t there in the first place (Gosselin & Schyns, 2003). Our brain can also play tricks on our perception. It can interpret the stimuli in weird ways. Optical illusions are a fun example of how our perception works, below are a couple examples. How can two colors be the same while you perceive them as different? Illusion 1 is an example of how context and expectations shape your perception. Square A and B are the same shade of grey but your brain interprets them as completely different. You see a checkerboard and expect a certain pattern, A is supposed to be black and B is supposed to be white. Combine this with the contexts of the shadow: your brain expects the squares in the shadow to be darker. Sometimes your brain makes you see things that aren’t there. You probably sees a black triangle laying on top of three circles and a white triangle in illusion 2. That is your brain filling up the gabs. There is no black triangle, the triangle is a lie! There are just three white pizza’s all with a missing slice and three lines with the same angles.  Illusion 3 is a picture of two faces or a vase. It all depends on the angle you are looking from, but you can never see both at the same time.

illusion 1                                                         illusion 2                                          illusion 3

How we perceive these illusions depends on our perceptual sets. A perceptual set is the tendency to interpret a stimulus in a certain way only. It is what makes you see the faces before the vase in illusion 3 (or the vase before the faces). Our perceptual sets are heavily influenced by our emotions, expectations, beliefs, context and past experiences.

Perception is sometimes weird and that our brain words in strange ways. You might wonder why we have such a thing as perception in the first place. Why can we not just perceive the world as we sensed it? And what is the function of perception? Perception is quite useful for filtering out the necessary information only. We would go crazy by all the stimuli around us if we would perceive the world as we sense it. We use our perception for attention, to figure out what information is coming in. The incoming information can be filtered through our selective attention, that way our brain ignores anything else but the stimuli of interest. Selective attention is what we use when we become immersed in a game. We only focus our attention to the stimuli from the game and ignore the outside world. Perception is also used for localizing where the information of interest is coming from. When you walk through your town and smell something amazing you might want to wonder where it’s coming from. Or your perception already did the work and you know it was from the bakery across the street. Perception can also help you recognize a stimuli. You smell the bakery and immediately recognize that they just finished baking their bread.

We can also filter out unnecessary information with our senses directly. Our sensory cells respond less and less when a stimulus stays the same for a while. After a while we no longer register the stimulus. This is called sensory adaptation. Think about the pressure of your clothes, you notice it when you put them on and when you move. Most of the day you just won’t notice them due to sensory adaptation. The same happens to the noise your fridge makes or the ticking of your clock. The smell cells in your nose will even stop responding for a while. They need to be given a chance to recover before you can smell again (Dalton, 2000).

Not all senses are equally important to games. Smell isn’t used in games since the smell-o-console hasn’t been invented yet. You’re also not very likely to lick your screen to see what the game tastes like. The only senses we can use in games are vision, hearing and tactile (touch, vibration and pressure). As designers we only have to account for hearing and vision. We have very little control over the feel of the keyboard or controller. Do think about adding vibration occasionally when your game is played with a controller.

Thomas was alone is a favorite of mine because of the excellent use of emotional narration but the game also works well perception-wise. When you play the game for the first time you immediately understand who Thomas is. Considering Thomas is a red rectangle, that is kind of amazing. Thomas was alone shapes the player’s perception with its title, expectations and context. From the title you immediately expect to play or interact with a character named Thomas. You expect Thomas to be one of the characters or perhaps the playable character. The narration adds to this as well once the player starts the game. There is no need to show a big arrow with the word ‘playable character’ written on it, your perception worked it out already. Without its art, the game would be nowhere. The choice for abstract art was a conscious one. It’s not just to play with our perception, it helps our perception. The color scheme of the game is mostly monochrome except for the characters, they really pop-out. From the first interaction it is clear that these colorful rectangles are the objects of interest. Your gaming knowledge matters to your perception as well. It helps you understand where the characters need to go, where you can and can’t go and how to interact with the game in general.

Tips and suggestions
These tips and suggestions can be applied to all types of games. For some genres it might be easier than others but it is good practice to make use of player expectations. Do a little research into other games your target audience plays or research similar games. Find out what these games have in common with each other or what popular gaming conventions are in the genre. If you plan to make a mobile game where players have to slice things in half, look at other games where players slice things in half (hint: Fruit Ninja). How do players interact with the game? Is it a common way to interact with these types of games? Are all good questions to ask yourself. Don’t just blindly copy mechanics and features from a similar game, find out what is common knowledge among your players and what they expect.

Help the player’s selective attention by making use of the pop-out effect for objects of interest. Think about the little shake animation in candy crush. The shake grabs the player’s attention immediately, it’s even visible from the corners of your eyes. Or make use of colors that are brighter than others for objects of interest. This might be the domain of the artists but it is very important for game designers to take this into account as well. It’s the game designer’s task to guide the art team into making decisions that benefit and complement the game design. Audio can also be used in interesting ways to help the player’s perception in the game. You can use it as a mechanic to lure the players or as a way to foreshadow an upcoming monster. Perception is an interesting thing our brain does. We can aid it through our game design or play with it. The possibilities are endless.

References and stuff

  • Crash course psychology: https://www.youtube.com/watch?v=unWnZvXJH2o&t=9s
  • Gosselin, F. & Schyns, P. G. (2003). Superstition perception reveal properties of internal representations. Psychological Science, 14(5), 505-509.
  • Dalton, P. (2000). Psychophysical and behavioral characteristics of olfactory adaptation. Chemical senses, 25, 487-492

Reactance theory

You can make anything more desirable by forbidding it. That something can be anything: an item, an action, an idea. This is known as the reactance theory. Reactance is the feeling you get when someone limits your freedom or options. Reactance is what happens when you’re not allowed to do something or when you are told you have to do something.  Continue reading Reactance theory